Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity.

Ornella Di Pietro; Esther Vicente-García; Martin C Taylor ORCID logo; Diana Berenguer; Elisabet Viayna; Anna Lanzoni; Irene Sola; Helena Sayago; Cristina Riera; Roser Fisa; +5 more... M Victòria Clos; Belén Pérez; John M Kelly ORCID logo; Rodolfo Lavilla; Diego Muñoz-Torrero; (2015) Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. European journal of medicinal chemistry, 105. pp. 120-137. ISSN 0223-5234 DOI: 10.1016/j.ejmech.2015.10.007
Copy

Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2-4-step sequences featuring an initial multicomponent Povarov reaction as the key step. To assess the therapeutic potential of the novel compounds, we have evaluated their in vitro activity against T. brucei, T. cruzi, and Leishmania infantum, as well as their brain permeability, which is of specific interest for the treatment of late-stage HAT. To assess their potential toxicity, we have determined their cytotoxicity against rat myoblast L6 cells and their AChE inhibitory activity. Several tricyclic heterofused quinoline derivatives were found to display an interesting multi-trypanosomatid profile, with one-digit micromolar potencies against two of these parasites and two-digit micromolar potency against the other. Pyranoquinoline 39, which displays IC50 values of 1.5 μM, 6.1 μM and 29.2 μM against T. brucei, L. infantum and T. cruzi, respectively, brain permeability, better drug-like properties (lower lipophilicity and molecular weight and higher CNS MPO desirability score) than hit 1, and the lowest AChE inhibitory activity of the series (IC50 > 30 μM), emerges as an interesting multi-trypanosomatid lead, amenable to further optimization particularly in terms of its selectivity index over mammalian cells.


picture_as_pdf
mmc1.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads