Probabilistic linkage without personal information successfully linked national clinical datasets.

Helen A Blake ORCID logo; Linda D Sharples ORCID logo; Katie Harron; Jan H van der Meulen ORCID logo; Kate Walker ORCID logo; (2021) Probabilistic linkage without personal information successfully linked national clinical datasets. Journal of clinical epidemiology, 136. pp. 136-145. ISSN 0895-4356 DOI: 10.1016/j.jclinepi.2021.04.015
Copy

BACKGROUND: Probabilistic linkage can link patients from different clinical databases without the need for personal information. If accurate linkage can be achieved, it would accelerate the use of linked datasets to address important clinical and public health questions. OBJECTIVE: We developed a step-by-step process for probabilistic linkage of national clinical and administrative datasets without personal information, and validated it against deterministic linkage using patient identifiers. STUDY DESIGN AND SETTING: We used electronic health records from the National Bowel Cancer Audit and Hospital Episode Statistics databases for 10,566 bowel cancer patients undergoing emergency surgery in the English National Health Service. RESULTS: Probabilistic linkage linked 81.4% of National Bowel Cancer Audit records to Hospital Episode Statistics, vs. 82.8% using deterministic linkage. No systematic differences were seen between patients that were and were not linked, and regression models for mortality and length of hospital stay according to patient and tumour characteristics were not sensitive to the linkage approach. CONCLUSION: Probabilistic linkage was successful in linking national clinical and administrative datasets for patients undergoing a major surgical procedure. It allows analysts outside highly secure data environments to undertake linkage while minimizing costs and delays, protecting data security, and maintaining linkage quality.


picture_as_pdf
Linkage without patient identifiers - accepted version.pdf
subject
Accepted Version
Available under Creative Commons: NC-ND 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads