Evaluating the effect of healthcare providers on the clinical path of heart failure patients through a semi-Markov, multi-state model.

Francesca Gasperoni ORCID logo; Francesca Ieva; Anna Maria Paganoni; Christopher H Jackson; Linda Sharples ORCID logo; (2020) Evaluating the effect of healthcare providers on the clinical path of heart failure patients through a semi-Markov, multi-state model. BMC Health Services Research, 20 (1). 533-. DOI: 10.1186/s12913-020-05294-3
Copy

BACKGROUND: Investigating similarities and differences among healthcare providers, on the basis of patient healthcare experience, is of interest for policy making. Availability of high quality, routine health databases allows a more detailed analysis of performance across multiple outcomes, but requires appropriate statistical methodology. METHODS: Motivated by analysis of a clinical administrative database of 42,871 Heart Failure patients, we develop a semi-Markov, illness-death, multi-state model of repeated admissions to hospital, subsequent discharge and death. Transition times between these health states each have a flexible baseline hazard, with proportional hazards for patient characteristics (case-mix adjustment) and a discrete distribution for frailty terms representing clusters of providers. Models were estimated using an Expectation-Maximization algorithm and the number of clusters was based on the Bayesian Information Criterion. RESULTS: We are able to identify clusters of providers for each transition, via the inclusion of a nonparametric discrete frailty. Specifically, we detect 5 latent populations (clusters of providers) for the discharge transition, 3 for the in-hospital to death transition and 4 for the readmission transition. Out of hospital death rates are similar across all providers in this dataset. Adjusting for case-mix, we could detect those providers that show extreme behaviour patterns across different transitions (readmission, discharge and death). CONCLUSIONS: The proposed statistical method incorporates both multiple time-to-event outcomes and identification of clusters of providers with extreme behaviour simultaneously. In this way, the whole patient pathway can be considered, which should help healthcare managers to make a more comprehensive assessment of performance.


picture_as_pdf
Gasperoni Semi-Markov models BMC Health Serv Res 2020.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads