Insights into antitrypanosomal drug mode-of-action from cytology-based profiling.

James A Thomas ORCID logo; Nicola Baker; Sebastian Hutchinson; Caia Dominicus ORCID logo; Anna Trenaman; Lucy Glover ORCID logo; Sam Alsford ORCID logo; David Horn ORCID logo; (2018) Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLOS NEGLECTED TROPICAL DISEASES, 12 (11). e0006980-. ISSN 1935-2735 DOI: 10.1371/journal.pntd.0006980
Copy

Chemotherapy continues to have a major impact on reducing the burden of disease caused by trypanosomatids. Unfortunately though, the mode-of-action (MoA) of antitrypanosomal drugs typically remains unclear or only partially characterised. This is the case for four of five current drugs used to treat Human African Trypanosomiasis (HAT); eflornithine is a specific inhibitor of ornithine decarboxylase. Here, we used a panel of T. brucei cellular assays to probe the MoA of the current HAT drugs. The assays included DNA-staining followed by microscopy and quantitative image analysis, or flow cytometry; terminal dUTP nick end labelling to monitor mitochondrial (kinetoplast) DNA replication; antibody-based detection of sites of nuclear DNA damage; and fluorescent dye-staining of mitochondria or lysosomes. We found that melarsoprol inhibited mitosis; nifurtimox reduced mitochondrial protein abundance; pentamidine triggered progressive loss of kinetoplast DNA and disruption of mitochondrial membrane potential; and suramin inhibited cytokinesis. Thus, current antitrypanosomal drugs perturb distinct and specific cellular compartments, structures or cell cycle phases. Further exploiting the findings, we show that putative mitogen-activated protein-kinases contribute to the melarsoprol-induced mitotic defect, reminiscent of the mitotic arrest associated signalling cascade triggered by arsenicals in mammalian cells, used to treat leukaemia. Thus, cytology-based profiling can rapidly yield novel insight into antitrypanosomal drug MoA.


picture_as_pdf
Insights into antitrypanosomal drug mode-of-action from cytology-based profiling.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads