Bayesian disclosure risk assessment: predicting small frequencies in contingency tables

JJ Forster; EL Webb; (2007) Bayesian disclosure risk assessment: predicting small frequencies in contingency tables. Wiley. https://material-uat.leaf.cosector.com/id/eprint/4649236
Copy

We propose an approach for assessing the risk of individual identification in the release of categorical data. This requires the accurate calculation of predictive probabilities for those cells in a contingency table which have small sample frequencies, making the problem somewhat different from usual contingency table estimation, where interest is generally focused on regions of high probability. Our approach is Bayesian and provides posterior predictive probabilities of identification risk. By incorporating model uncertainty in our analysis, we can provide more realistic estimates of disclosure risk for individual cell counts than are provided by methods which ignore the multivariate structure of the data set

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads