Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi.

Matthew Yeo ORCID logo; Isabel LMauricio; Louisa A Messenger ORCID logo; Michael D Lewis ORCID logo; Martin SLlewellyn; NidiaAcosta; TapanBhattacharyya; PatricioDiosque; Hernan JCarrasco; Michael A Miles ORCID logo; (2011) Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS neglected tropical diseases, 5 (6). e1049-. ISSN 1935-2727 DOI: 10.1371/journal.pntd.0001049
Copy

BACKGROUND: Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. METHODOLOGY/PRINCIPAL FINDINGS: We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. CONCLUSIONS/SIGNIFICANCE: We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.



picture_as_pdf
pntd.0001049.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Explore Further

Read more research from the creator(s):

Find work associated with the faculties and division(s):

Find work associated with the research centre(s):

Find work from this publication:

Find other related resources: