Multiple Imputation and Random Forests (MIRF) for Unobservable, High-Dimensional Data

BAS Nonyane; AS Foulkes; (2007) Multiple Imputation and Random Forests (MIRF) for Unobservable, High-Dimensional Data. International Journal of Biostatistics, 3 (1). Article12-. https://material-uat.leaf.cosector.com/id/eprint/3840
Copy

Understanding the genetic underpinnings to complex diseases requires consideration of sophisticated analytical methods designed to uncover intricate associations across multiple predictor variables. At the same time, knowledge of whether single nucleotide polymorphisms within a gene are on the same (in cis) or on different (in trans) chromosomal copies, may provide crucial information about measures of disease progression. In association studies of unrelated individuals, allelic phase is generally unobservable, generating an additional analytical challenge. In this manuscript, we describe a novel approach that combines multiple imputation and random forests for this high-dimensional, unobservable data setting. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is presented. A simulation study is also presented to characterize method performance.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads