Survival analysis part IV: further concepts and methods in survival analysis.
Most analyses of survival data use primarily Kaplan-Meier plots, logrank tests and Cox models. We have described the rationale and interpretation of each method in previous papers of this series, but here we have sought to highlight some of their limitations. We have also suggested alternative methods that can be applied when either the data or a given model is deficient, or when more difficult or specific problems are to be addressed. For example, analysis of recurrent events can make an important contribution to the understanding of the survival process, and so investigating repeat cancer relapses may be more informative than concentrating only on the time until the first. More fundamentally, missing data are a common issue in data collection that in some cases can seriously flaw a proposed analysis. Such considerations may be highly relevant to the analysis of a data set, but are rarely mentioned in the analysis of survival data. One possible reason for this is a perceived lack of computer software, but many of the approaches discussed here are currently incorporated into existing commercial statistical packages (e.g. SAS, S-Plus, Stata) and freeware (e.g. R). On the other hand, the desire may be to 'keep things simple for the readership'. This view is reasonable, but is valid only where a simple analysis adequately represents the survival experience of patients in the study. Ensuring the analyses are appropriate is therefore crucial. More advanced survival methods can derive more information from the collected data; their use may admittedly convey a less straightforward message, but at the same time could allow a better understanding of the survival process. The aim of this series has been to aid awareness, understanding and interpretation of the many and varied methods that constitute the analysis of survival data. It is paramount that analyses are performed in the knowledge of the assumptions that are made therein, and the more complex methods, in particular, are best applied by a statistician.
Item Type | Article |
---|---|
ISI | 185074900002 |
Explore Further
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394469 (OA Location)
- 10.1038/sj.bjc.6601117 (DOI)
- 12942105 (PubMed)