VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes.

Lucy Glover; Sebastian Hutchinson; Sam Alsford ORCID logo; David Horn; (2016) VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 113 (26). pp. 7225-7230. ISSN 0027-8424 DOI: 10.1073/pnas.1600344113
Copy

Allelic exclusion underpins antigenic variation and immune evasion in African trypanosomes. These bloodstream parasites use RNA polymerase-I (pol-I) to transcribe just one telomeric variant surface glycoprotein (VSG) gene at a time, producing superabundant and switchable VSG coats. We identified trypanosome VSG exclusion-1 (VEX1) using a genetic screen for defects in telomere-exclusive expression. VEX1 was sequestered by the active VSG and silencing of other VSGs failed when VEX1 was either ectopically expressed or depleted, indicating positive and negative regulation, respectively. Positive regulation affected VSGs and nontelomeric pol-I-transcribed genes, whereas negative regulation primarily affected VSGs. Negative regulation by VEX1 also affected telomeric pol-I-transcribed reporter constructs, but only when they contained blocks of sequence sharing homology with a pol-I-transcribed locus. We conclude that restricted positive regulation due to VEX1 sequestration, combined with VEX1-dependent, possibly homology-dependent silencing, drives a "winner-takes-all" mechanism of allelic exclusion.


picture_as_pdf
2016 VEX1 - PNAS.pdf
subject
Published Version
Available under Creative Commons: NC-ND 3.0

View Download
picture_as_pdf

Accepted Version


Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads