Statistical methods for cost-effectiveness analyses that use observational data: a critical appraisal tool and review of current practice.

Noémi Kreif; Richard Grieve ORCID logo; M Zia Sadique; (2012) Statistical methods for cost-effectiveness analyses that use observational data: a critical appraisal tool and review of current practice. Health economics, 22 (4). pp. 486-500. ISSN 1057-9230 DOI: 10.1002/hec.2806
Copy

Many cost-effectiveness analyses (CEAs) use data from observational studies. Statistical methods can only address selection bias if they make plausible assumptions. No quality assessment tool is available for appraising CEAs that use observational studies. We developed a new checklist to assess statistical methods for addressing selection bias in CEAs that use observational data. The checklist criteria were informed by a conceptual review and applied in a systematic review of economic evaluations. Criteria included whether the study assessed the 'no unobserved confounding' assumption, overlap of baseline covariates between the treatment groups and the specification of the regression models. The checklist also considered structural uncertainty from the choice of statistical approach. We found 81 studies that met the inclusion criteria: studies tended to use regression (51%), matching on individual covariates (25%) or matching on the propensity score (22%). Most studies (77%) did not assess the 'no observed confounding' assumption, and few studies (16%) fully considered structural uncertainty from the choice of statistical approach. We conclude that published CEAs do not assess the main assumptions behind statistical methods for addressing selection bias. This checklist can raise awareness about the assumptions behind statistical methods for addressing selection bias and can complement existing method guidelines for CEAs.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads