N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli.

Michael Wacker; Dennis Linton; Paul G Hitchen; Mihai Nita-Lazar; Stuart M Haslam; Simon J North; Maria Panico; Howard R Morris; Anne Dell; Brendan W Wren ORCID logo; +1 more... Markus Aebi; (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science (New York, NY), 298 (5599). pp. 1790-1793. ISSN 0036-8075 DOI: 10.1126/science.298.5599.1790
Copy

N-linked protein glycosylation is the most abundant posttranslation modification of secretory proteins in eukaryotes. A wide range of functions are attributed to glycan structures covalently linked to asparagine residues within the asparagine-X-serine/threonine consensus sequence (Asn-Xaa-Ser/Thr). We found an N-linked glycosylation system in the bacterium Campylobacter jejuni and demonstrate that a functional N-linked glycosylation pathway could be transferred into Escherichia coli. Although the bacterial N-glycan differs structurally from its eukaryotic counterparts, the cloning of a universal N-linked glycosylation cassette in E. coli opens up the possibility of engineering permutations of recombinant glycan structures for research and industrial applications.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads