Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.

Tanya Parish; Debbie A Smith; Sharon Kendall; Nicola Casali; Gregory J Bancroft ORCID logo; Neil G Stoker; (2003) Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infection and immunity, 71 (3). pp. 1134-1140. ISSN 0019-9567 DOI: 10.1128/IAI.71.3.1134-1140.2003
Copy

Two-component regulatory signal transduction systems are widely distributed among bacteria and enable the organisms to make coordinated changes in gene expression in response to a variety of environmental stimuli. The genome sequence of Mycobacterium tuberculosis contains 11 complete two-component systems, four isolated homologous regulators, and three isolated homologous sensors. We have constructed defined mutations in six of these genes and measured virulence in a SCID mouse model. Mice infected with four of the mutants (deletions of devR, tcrXY, trcS, and kdpDE) died more rapidly than those infected with wild-type bacteria. The other two mutants (narL and Rv3220c) showed no change compared to the wild-type H37Rv strain. The most hypervirulent mutant (devRdelta) also grew more rapidly in the acute stage of infection in immunocompetent mice and in gamma interferon-activated macrophages. These results define a novel class of genes in this pathogen whose presence slows down its multiplication in vivo or increases its susceptibility to host killing mechanisms. Thus, M. tuberculosis actively maintains a balance between its own survival and that of the host.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads