Two novel assays for the detection of haemin-binding properties of antimalarials evaluated with compounds isolated from medicinal plants.
Forty-two compounds isolated from nine plants used within South America for the treatment of malaria were tested for haemin binding using two novel, rapid screening methods. The data obtained were analysed with respect to IC(50) values for in vitro toxicity to Plasmodium falciparum trophozoites. One method, a multiwell assay based on the inhibition of the interaction of haemin with glutathione (GSH), is sensitive in the 10 microM range, takes c. 1 h and is suitable for either a high throughput screen or rapid assay during natural product isolation. Of 19 compounds showing antiplasmodial activity (IC(50) < 40 microM), 16 (84%) showed >40% inhibition of GSH-haemin reaction. The sensitivity and specificity of the assay were 0.85 and 0.82, respectively. The positive predictive value was 0.81 and the negative predictive value 0.86. A more sensitive assay (0.1 microM range) is based on the reversal by haemin-binding compounds of the haemin inhibition of the L-dopachrome-methyl ester tautomerase activity of human macrophage migration inhibitory factor. This assay gives a better idea of the affinity of interaction and uses very small amounts of test compound. The log[RI(50)] of eight of the compounds that tested positive in the above assays together with those of quinine and chloroquine showed a positive correlation with log[antiplasmodial IC(50)] for strain T9-96 (r = 0.824) and strain K1 (r = 0.904). Several of the antimalarial compounds that bind haemin are isoquinolines, a class not shown previously to interact with haemin.
Item Type | Article |
---|---|
Keywords | Animal, Antimalarials/isolation & purification/*pharmacology, Glutathione/metabolism, Hemin/*metabolism, Human, Inhibitory Concentration 50, Macrophage Migration-Inhibitory Factors/metabolism, Malaria, Falciparum/metabolism, Parasitic Sensitivity Tests/*methods, Plant Extracts/isolation & purification/pharmacology, Plants, Medicinal/*chemistry, Plasmodium falciparum/*drug effects/metabolism, Support, Non-U.S. Gov't |
ISI | 176787100005 |