Sex, subdivision, and domestic dispersal of Trypanosoma cruzi lineage I in southern Ecuador.
BACKGROUND: Molecular epidemiology at the community level has an important guiding role in zoonotic disease control programmes where genetic markers are suitably variable to unravel the dynamics of local transmission. We evaluated the molecular diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, in southern Ecuador (Loja Province). This kinetoplastid parasite has traditionally been a paradigm for clonal population structure in pathogenic organisms. However, the presence of naturally occurring hybrids, mitochondrial introgression, and evidence of genetic exchange in the laboratory question this dogma. METHODOLOGY/PRINCIPAL FINDINGS: Eighty-one parasite isolates from domiciliary, peridomiciliary, and sylvatic triatomines and mammals were genotyped across 10 variable microsatellite loci. Two discrete parasite populations were defined: one predominantly composed of isolates from domestic and peridomestic foci, and another predominantly composed of isolates from sylvatic foci. Spatial genetic variation was absent from the former, suggesting rapid parasite dispersal across our study area. Furthermore, linkage equilibrium between loci, Hardy-Weinberg allele frequencies at individual loci, and a lack of repeated genotypes are indicative of frequent genetic exchange among individuals in the domestic/peridomestic population. CONCLUSIONS/SIGNIFICANCE: These data represent novel population-level evidence of an extant capacity for sex among natural cycles of T. cruzi transmission. As such they have dramatic implications for our understanding of the fundamental genetics of this parasite. Our data also elucidate local disease transmission, whereby passive anthropogenic domestic mammal and triatomine dispersal across our study area is likely to account for the rapid domestic/peridomestic spread of the parasite. Finally we discuss how this, and the observed subdivision between sympatric sylvatic and domestic/peridomestic foci, can inform efforts at Chagas disease control in Ecuador.
Item Type | Article |
---|---|
Keywords | CHAGAS-DISEASE, GENETIC EXCHANGE, MOLECULAR EPIDEMIOLOGY, POPULATION-GENETICS, PARASITIC PROTOZOA, CLONAL THEORY, LEISHMANIA, PREDOMINANCE, SURVEILLANCE, TRANSMISSION |
ISI | 285547000014 |