The role of two novel regulatory sites in the activation of the cGMP-dependent protein kinase from Plasmodium falciparum.

Wensheng Deng; Asha Parbhu-Patel; David J Meyer; David A Baker ORCID logo; (2003) The role of two novel regulatory sites in the activation of the cGMP-dependent protein kinase from Plasmodium falciparum. The Biochemical journal, 374 (Pt 2). pp. 559-565. ISSN 0264-6021 DOI: 10.1042/BJ20030474
Copy

The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) uniquely contains three cGMP binding sites, but also has a 'degenerate' fourth site. The role of each cGMP-binding site in PfPKG activation remains unknown. We have analysed the effect of mutation of each cGMP-binding site (individually and in combination) on PfPKG activation in vitro. The most striking result was that mutation of cGMP site 3 resulted in a 10-49-fold increase in the K (a((cGMP))) value and a 45-55% decrease in maximal activity compared with wild-type. Mutations involving only cGMP-binding sites 1 and 2 had less effect on both the K (a((cGMP))) values and the maximal activities. These results suggest that, although all three cGMP-binding sites are involved in PfPKG activation, cGMP-binding site 3 has the greatest influence on activation. A mutation in the fourth, degenerate cGMP-binding site decreased PfPKG maximal activity by 40%, but did not change the K (a((cGMP))) value for the PfPKG mutant, suggesting that this site does not bind cGMP, but is required for full activation of PfPKG. The distinct activation properties of PfPKG from mammalian isoforms may be exploitable in the design of a parasite-specific inhibitor and development of a novel anti-malarial drug.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads