Major transitions in ‘big’ history

Robert Aunger ORCID logo; (2007) Major transitions in ‘big’ history. Technological forecasting and social change, 74 (8). pp. 1137-1163. ISSN 0040-1625 DOI: 10.1016/j.techfore.2007.01.006
Copy

'Big' history treats events between the Big Bang and contemporary technological life on Earth as a single narrative, suggesting that cosmological, biological and social processes can be treated similarly. An obvious trend in big history is the development of increasingly complex systems. This implies that the degree to which historical systems have deviated from thermodynamic equilibrium has increased over time. Recent theory suggests that step-wise changes in the work accomplished by a system can be explained using steady-state non-equilibrium thermodynamics. This paper argues that significant macro-historical events can therefore be characterized as transitions to steady states exhibiting persistently higher levels of thermodynamic disequilibrium which result in observably novel kinds or levels of organisation. Further, non-equilibrium thermodynamics suggests that such transitions should have particular temporal structures, beginning with sustainable energy innovations which result in novelties in organisation and in control mechanisms for maintaining the new organisation against energy fluctuations. We show how events in big history which qualify as historically significant by these criteria exhibit this internal structure. Big history thus obeys law-like processes, resulting in a common pattern of major transitions between steady-state historical regimes. This common process from cosmological to contemporary times makes big history a viable and relevant field of scientific study. © 2007 Elsevier Inc. All rights reserved.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads