Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice.

Stephen T Smiley; Paula A Lanthier; Kevin N Couper; Frank M Szaba; Jonathan E Boyson; Wangxue Chen; Lawrence L Johnson; (2005) Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice. Journal of immunology (Baltimore, Md, 174 (12). pp. 7904-7911. ISSN 0022-1767 DOI: 10.4049/jimmunol.174.12.7904
Copy

Mice lacking functional CD1d genes were used to study mechanisms of resistance to the protozoan parasite Toxoplasma gondii. Wild-type (WT) BALB/c mice, CD1d-deficient BALB/c mice, and WT C57BL/6 mice all survived an acute oral infection with a low dose of mildly virulent strain ME49 T. gondii cysts. In contrast, most CD1d-deficient C57BL/6 mice died within 2 wk of infection. Despite having parasite burdens that were only slightly higher than WT mice, CD1d-deficient C57BL/6 mice displayed greater weight loss and intestinal pathology. In C57BL/6 mice, CD4(+) cells can cause intestinal pathology during T. gondii infection. Compared with WT mice, infected CD1d-deficient C57BL/6 mice had higher frequencies and numbers of activated (CD44(high)) CD4(+) cells in mesenteric lymph nodes. Depletion of CD4(+) cells from CD1d-deficient mice reduced weight loss and prolonged survival, demonstrating a functional role for CD4(+) cells in their increased susceptibility to T. gondii infection. CD1d-deficient mice are deficient in Valpha14(+) T cells, a major population of NKT cells. Involvement of these cells in resistance to T. gondii was investigated using gene-targeted Jalpha18-deficient C57BL/6 mice, which are deficient in Valpha14(+) T cells. These mice did not succumb to acute infection, but experienced greater weight loss and more deaths than B6 mice during chronic infection, indicating that Valpha14(+) cells contribute to resistance to T. gondii. The data identify CD4(+) cells as a significant component of the marked susceptibility to T. gondii infection observed in CD1d-deficient C57BL/6 mice, and establish T. gondii as a valuable tool for deciphering CD1d-dependent protective mechanisms.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads