Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia.

Shannon Takala-Harrison; Taane G Clark ORCID logo; Christopher G Jacob; Michael P Cummings; Olivo Miotto; Arjen M Dondorp; Mark M Fukuda; Francois Nosten; Harald Noedl; Mallika Imwong; +29 more... Delia Bethell; Youry Se; Chanthap Lon; Stuart D Tyner; David L Saunders; Duong Socheat; Frederic Ariey; Aung Pyae Phyo; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Kasia Stepniewska; Jennifer Flegg; Cesar Arze; Gustavo C Cerqueira; Joana C Silva; Stacy M Ricklefs; Stephen F Porcella; Robert M Stephens; Matthew Adams; Leo J Kenefic; Susana Campino ORCID logo; Sarah Auburn; Bronwyn MacInnis; Dominic P Kwiatkowski; Xin-zhuan Su; Nicholas J White; Pascal Ringwald; Christopher V Plowe; (2013) Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America, 110 (1). pp. 240-245. ISSN 0027-8424 DOI: 10.1073/pnas.1211205110
Copy

The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.

visibility_off picture_as_pdf

picture_as_pdf
pnas.201211205.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: NC-ND 3.0

Request Copy

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads