Reducing and meta-analysing estimates from distributed lag non-linear models.

Antonio Gasparrini ORCID logo; Ben Armstrong ORCID logo; (2013) Reducing and meta-analysing estimates from distributed lag non-linear models. BMC medical research methodology, 13 (1). 1-. ISSN 1471-2288 DOI: 10.1186/1471-2288-13-1
Copy

BACKGROUND: The two-stage time series design represents a powerful analytical tool in environmental epidemiology. Recently, models for both stages have been extended with the development of distributed lag non-linear models (DLNMs), a methodology for investigating simultaneously non-linear and lagged relationships, and multivariate meta-analysis, a methodology to pool estimates of multi-parameter associations. However, the application of both methods in two-stage analyses is prevented by the high-dimensional definition of DLNMs. METHODS: In this contribution we propose a method to synthesize DLNMs to simpler summaries, expressed by a reduced set of parameters of one-dimensional functions, which are compatible with current multivariate meta-analytical techniques. The methodology and modelling framework are implemented in R through the packages dlnm and mvmeta. RESULTS: As an illustrative application, the method is adopted for the two-stage time series analysis of temperature-mortality associations using data from 10 regions in England and Wales. R code and data are available as supplementary online material. DISCUSSION AND CONCLUSIONS: The methodology proposed here extends the use of DLNMs in two-stage analyses, obtaining meta-analytical estimates of easily interpretable summaries from complex non-linear and delayed associations. The approach relaxes the assumptions and avoids simplifications required by simpler modelling approaches.



picture_as_pdf
1471-2288-13-1-S1.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Explore Further

Read more research from the creator(s):

Find work associated with the faculties and division(s):

Find work associated with the research centre(s):

Find work from this publication:

Find other related resources: