Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates

Olugbenga Oluwagbemi ORCID logo; Elijah Oladipo ORCID logo; Olatunji Kolawole ORCID logo; Julius Oloke; Temitope Adelusi; Boluwatife Irewolede ORCID logo; Emmanuel Dairo ORCID logo; Ayodele Ayeni; Kehinde Kolapo ORCID logo; Olawumi Akindiya; +3 more... Jerry Oluwasegun ORCID logo; Bamigboye Oluwadara; Segun Fatumo ORCID logo; (2022) Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates. Computation, 10 (7). p. 117. ISSN 2079-3197 DOI: 10.3390/computation10070117
Copy

<jats:p>This article is devoted to applying bioinformatics and immunoinformatics approaches for the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce threats from the pandemic include social restrictions, restrictions on international travel, and vaccine development. In most cases, vaccine development depends on the spike glycoprotein, which serves as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged from mutations crossing continental boundaries, about 6000 delta variants have been reported along the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage. This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes. The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of 110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has good population coverage, with the highest range in East Africa (80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response.</jats:p>


picture_as_pdf
computation-10-00117-v2.pdf
subject
Published Version
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads