Assessing trial representativeness using serious adverse events: an observational analysis using aggregate and individual-level data from clinical trials and routine healthcare data.

Peter Hanlon ORCID logo; Elaine Butterly; Anoop SV Shah ORCID logo; Laurie J Hannigan; Sarah H Wild; Bruce Guthrie; Frances S Mair; Sofia Dias; Nicky J Welton; David A McAllister; (2022) Assessing trial representativeness using serious adverse events: an observational analysis using aggregate and individual-level data from clinical trials and routine healthcare data. BMC medicine, 20 (1). 410-. ISSN 1741-7015 DOI: 10.1186/s12916-022-02594-9
Copy

BACKGROUND: The applicability of randomised controlled trials of pharmacological agents to older people with frailty/multimorbidity is often uncertain, due to concerns that trials are not representative. However, assessing trial representativeness is challenging and complex. We explore an approach assessing trial representativeness by comparing rates of trial serious adverse events (SAE) to rates of hospitalisation/death in routine care. METHODS: This was an observational analysis of individual (125 trials, n=122,069) and aggregate-level drug trial data (483 trials, n=636,267) for 21 index conditions compared to population-based routine healthcare data (routine care). Trials were identified from ClinicalTrials.gov . Routine care comparison from linked primary care and hospital data from Wales, UK (n=2.3M). Our outcome of interest was SAEs (routinely reported in trials). In routine care, SAEs were based on hospitalisations and deaths (which are SAEs by definition). We compared trial SAEs in trials to expected SAEs based on age/sex standardised routine care populations with the same index condition. Using IPD, we assessed the relationship between multimorbidity count and SAEs in both trials and routine care and assessed the impact on the observed/expected SAE ratio additionally accounting for multimorbidity. RESULTS: For 12/21 index conditions, the pooled observed/expected SAE ratio was <1, indicating fewer SAEs in trial participants than in routine care. A further 6/21 had point estimates <1 but the 95% CI included the null. The median pooled estimate of observed/expected SAE ratio was 0.60 (95% CI 0.55-0.64; COPD) and the interquartile range was 0.44 (0.34-0.55; Parkinson's disease) to 0.87 (0.58-1.29; inflammatory bowel disease). Higher multimorbidity count was associated with SAEs across all index conditions in both routine care and trials. For most trials, the observed/expected SAE ratio moved closer to 1 after additionally accounting for multimorbidity count, but it nonetheless remained below 1 for most. CONCLUSIONS: Trial participants experience fewer SAEs than expected based on age/sex/condition hospitalisation and death rates in routine care, confirming the predicted lack of representativeness. This difference is only partially explained by differences in multimorbidity. Assessing observed/expected SAE may help assess the applicability of trial findings to older populations in whom multimorbidity and frailty are common.


picture_as_pdf
Hanlon-etal-2022-Assessing-trial-representativeness-using-serious-adverse-events.pdf
subject
Published Version
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads