Increased energy use for adaptation significantly impacts mitigation pathways.

Francesco Pietro Colelli ORCID logo; Johannes Emmerling ORCID logo; Giacomo Marangoni ORCID logo; Malcolm N Mistry ORCID logo; Enrica De Cian ORCID logo; (2022) Increased energy use for adaptation significantly impacts mitigation pathways. Nature Communications, 13 (1). 4964-. ISSN 2041-1723 DOI: 10.1038/s41467-022-32471-1
Copy

Climate adaptation actions can be energy-intensive, but how adaptation feeds back into the energy system and the environment is absent in nearly all up-to-date energy scenarios. Here we quantify the impacts of adaptation actions entailing direct changes in final energy use on energy investments and costs, greenhouse gas emissions, and air pollution. We find that energy needs for adaptation increase considerably over time and with warming. The resulting addition in capacity for power generation leads to higher greenhouse gas emissions, local air pollutants, and energy system costs. In the short to medium term, much of the added capacity for power generation is fossil-fuel based. We show that mitigation pathways accounting for the adaptation-energy feedback would require a higher global carbon price, between 5% and 30% higher. Because of the benefits in terms of reduced adaptation needs, energy system costs in ambitious mitigation scenarios would be lower than previous estimates, and they would turn negative in well-below-2-degree scenarios, pointing at net gains in terms of power system costs.


picture_as_pdf
Colelli_etal_2022_Increased-energy-use-for-adaptation.pdf
subject
Published Version
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads