Cluster randomised trials with a binary outcome and a small number of clusters: comparison of individual and cluster level analysis method.

Jennifer A Thompson ORCID logo; Clemence Leyrat ORCID logo; Katherine L Fielding ORCID logo; Richard J Hayes ORCID logo; (2022) Cluster randomised trials with a binary outcome and a small number of clusters: comparison of individual and cluster level analysis method. BMC Medical Research Methodology, 22 (1). 222-. ISSN 1471-2288 DOI: 10.1186/s12874-022-01699-2
Copy

BACKGROUND: Cluster randomised trials (CRTs) are often designed with a small number of clusters, but it is not clear which analysis methods are optimal when the outcome is binary. This simulation study aimed to determine (i) whether cluster-level analysis (CL), generalised linear mixed models (GLMM), and generalised estimating equations with sandwich variance (GEE) approaches maintain acceptable type-one error including the impact of non-normality of cluster effects and low prevalence, and if so (ii) which methods have the greatest power. We simulated CRTs with 8-30 clusters, altering the cluster-size, outcome prevalence, intracluster correlation coefficient, and cluster effect distribution. We analysed each dataset with weighted and unweighted CL; GLMM with adaptive quadrature and restricted pseudolikelihood; GEE with Kauermann-and-Carroll and Fay-and-Graubard sandwich variance using independent and exchangeable working correlation matrices. P-values were from a t-distribution with degrees of freedom (DoF) as clusters minus cluster-level parameters; GLMM pseudolikelihood also used Satterthwaite and Kenward-Roger DoF. RESULTS: Unweighted CL, GLMM pseudolikelihood, and Fay-and-Graubard GEE with independent or exchangeable working correlation matrix controlled type-one error in > 97% scenarios with clusters minus parameters DoF. Cluster-effect distribution and prevalence of outcome did not usually affect analysis method performance. GEE had the least power. With 20-30 clusters, GLMM had greater power than CL with varying cluster-size but similar power otherwise; with fewer clusters, GLMM had lower power with common cluster-size, similar power with medium variation, and greater power with large variation in cluster-size. CONCLUSION: We recommend that CRTs with ≤ 30 clusters and a binary outcome use an unweighted CL or restricted pseudolikelihood GLMM both with DoF clusters minus cluster-level parameters.


picture_as_pdf
Thompson_etal_2022_Cluster-randomised-trials-with-a.pdf
subject
Published Version
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads