Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry.

Valérie O Baede ORCID logo; Mehri Tavakol; Margreet C Vos; Gwenan M Knight ORCID logo; Willem JB van Wamel ORCID logo; MACOTRA study group; (2022) Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry. Microbiology Spectrum, 10 (5). e0061522-. ISSN 2165-0497 DOI: 10.1128/spectrum.00615-22
Copy

Methicillin-resistant Staphylococcus aureus (MRSA) clusters are considered epidemic or nonepidemic based on their ability to spread effectively. Successful transmission could be influenced by dehydration tolerance. Current methods for determination of dehydration tolerance lack accuracy. Here, a climate-controlled in vitro dehydration assay using isothermal microcalorimetry (IMC) was developed and linked with mathematical modeling to determine survival of 44 epidemic versus 54 nonepidemic MRSA strains from France, the United Kingdom, and the Netherlands after 1 week of dehydration. For each MRSA strain, the growth parameters time to end of first growth phase (tmax [h]) and maximal exponential growth rate (μm) were deduced from IMC data for 3 experimental replicates, 3 different starting inocula, and before and after dehydration. If the maximal exponential growth rate was within predefined margins (±36% of the mean), a linear relationship between tmax and starting inoculum could be utilized to predict log reduction after dehydration for individual strains. With these criteria, 1,330 of 1,764 heat flow curves (data sets) (75%) could be analyzed to calculate the post-dehydration inoculum size, and thus the log reduction due to dehydration, for 90 of 98 strains (92%). Overall reduction was ~1 log after 1 week. No difference in dehydration tolerance was found between the epidemic and nonepidemic strains. Log reduction was negatively correlated with starting inoculum, indicating better survival of higher inocula. This study presents a framework to quantify bacterial survival. MRSA strains showed great capacity to persist in the environment, irrespective of epidemiological success. This finding strengthens the need for effective surface cleaning to contain MRSA transmission. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of infections globally. While some MRSA clusters have spread worldwide, others are not able to disseminate successfully beyond certain regions despite frequent introduction. Dehydration tolerance facilitates transmission in hospital environments through enhanced survival on surfaces and fomites, potentially explaining differences in transmission success between MRSA clusters. Unfortunately, the currently available techniques to determine dehydration tolerance of cluster-forming bacteria like S. aureus are labor-intensive and unreliable due to their dependence on quantitative culturing. In this study, bacterial survival was assessed in a newly developed assay using isothermal microcalorimetry. With this technique, the effect of drying can be determined without the disadvantages of quantitative culturing. In combination with a newly developed mathematical algorithm, we determined dehydration tolerance of a large number of MRSA strains in a systematic, unbiased, and robust manner.


picture_as_pdf
Baede_etal_2022_Dehydration-tolerance-in-epidemic-versus.pdf
subject
Published Version
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads