The use of disaggregate data in evaluations of public health interventions: cross-sectional dependence can bias inference.

Torleif Halkjelsvik; Antonio Gasparrini ORCID logo; Rannveig Kaldager Hart; (2022) The use of disaggregate data in evaluations of public health interventions: cross-sectional dependence can bias inference. ARCHIVES OF PUBLIC HEALTH, 80 (1). 36-. ISSN 0778-7367 DOI: 10.1186/s13690-022-00795-5
Copy

Higher availability of administrative data and better infrastructure for electronic surveys allow for large sample sizes in evaluations of national and other large scale policies. Although larger datasets have many advantages, the use of big disaggregate data (e.g., on individuals, households, stores, municipalities) can be challenging in terms of statistical inference. Measurements made at the same point in time may be jointly influenced by contemporaneous factors and produce more variation across time than suggested by the model. This excess variation, or co-movement over time, produce observations that are not truly independent (i.e., cross-sectional dependence). If this dependency is not accounted for, statistical uncertainty will be underestimated, and studies may indicate reform effects where there is none. In the context of interrupted time series (segmented regression), we illustrate the potential for bias in inference when using large disaggregate data, and we describe two simple solutions that are available in standard statistical software.


picture_as_pdf
The use of disaggregate data in evaluations of public health interventions cross-sectional dependence can bias inference.pdf
subject
Published Version
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads