Highly efficient vaccines for Bluetongue virus and a related Orbivirus based on reverse genetics.

Polly Roy ORCID logo; (2020) Highly efficient vaccines for Bluetongue virus and a related Orbivirus based on reverse genetics. CURRENT OPINION IN VIROLOGY, 44. pp. 35-41. ISSN 1879-6257 DOI: 10.1016/j.coviro.2020.05.003
Copy

Bluetongue virus (BTV) reverse genetics (RG), available since 2007, has allowed the dissection of the virus replication cycle, including discovery of a primary replication stage. This information has allowed the generation of Entry-Competent-Replication-Abortive (ECRA) vaccines, which enter cells and complete primary replication but fail to complete the later stage. A series of vaccine trials in sheep and cattle either with a single ECRA serotype or a cocktail of multiple ECRA serotypes have demonstrated that these vaccines provide complete protection against virulent virus challenge without cross-serotype interference. Similarly, an RG system developed for the related African Horse Sickness virus, which causes high mortality in equids has provided AHSV ECRA vaccines that are protective in horses. ECRA vaccines were incapable of productive replication in animals despite being competent for cell entry. This technology allows rapid generation of emerging Orbivirus vaccines and offers immunogenicity and safety levels that surpass attenuated or recombinant routes.


picture_as_pdf
1-s2.0-S1879625720300249-main.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads