Estimating ventilation rates in rooms with varying occupancy levels: Relevance for reducing transmission risk of airborne pathogens.

Arminder K Deol ORCID logo; Danny Scarponi; Peter Beckwith ORCID logo; Tom A Yates; Aaron S Karat; Ada WC Yan; Kathy S Baisley ORCID logo; Alison D Grant ORCID logo; Richard G White ORCID logo; Nicky McCreesh ORCID logo; (2021) Estimating ventilation rates in rooms with varying occupancy levels: Relevance for reducing transmission risk of airborne pathogens. PloS one, 16 (6). e0253096-. ISSN 1932-6203 DOI: 10.1371/journal.pone.0253096
Copy

BACKGROUND: In light of the role that airborne transmission plays in the spread of SARS-CoV-2, as well as the ongoing high global mortality from well-known airborne diseases such as tuberculosis and measles, there is an urgent need for practical ways of identifying congregate spaces where low ventilation levels contribute to high transmission risk. Poorly ventilated clinic spaces in particular may be high risk, due to the presence of both infectious and susceptible people. While relatively simple approaches to estimating ventilation rates exist, the approaches most frequently used in epidemiology cannot be used where occupancy varies, and so cannot be reliably applied in many of the types of spaces where they are most needed. METHODS: The aim of this study was to demonstrate the use of a non-steady state method to estimate the absolute ventilation rate, which can be applied in rooms where occupancy levels vary. We used data from a room in a primary healthcare clinic in a high TB and HIV prevalence setting, comprising indoor and outdoor carbon dioxide measurements and head counts (by age), taken over time. Two approaches were compared: approach 1 using a simple linear regression model and approach 2 using an ordinary differential equation model. RESULTS: The absolute ventilation rate, Q, using approach 1 was 2407 l/s [95% CI: 1632-3181] and Q from approach 2 was 2743 l/s [95% CI: 2139-4429]. CONCLUSIONS: We demonstrate two methods that can be used to estimate ventilation rate in busy congregate settings, such as clinic waiting rooms. Both approaches produced comparable results, however the simple linear regression method has the advantage of not requiring room volume measurements. These methods can be used to identify poorly-ventilated spaces, allowing measures to be taken to reduce the airborne transmission of pathogens such as Mycobacterium tuberculosis, measles, and SARS-CoV-2.


picture_as_pdf
Deol_etal_2021_Estimating-ventilation-rates-in-rooms.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads