Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection.

Artur Yakimovich; Moona Huttunen; Jerzy Samolej; Barbara Clough; Nagisa Yoshida; Serge Mostowy ORCID logo; Eva-Maria Frickel; Jason Mercer; (2020) Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection. mSphere, 5 (5). e00836-e00820. ISSN 2379-5042 DOI: 10.1128/mSphere.00836-20
Copy

The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified data sets for rapid network evolution. Here, we present a novel strategy, termed "mimicry embedding," for rapid application of neural network architecture-based analysis of pathogen imaging data sets. Embedding of a novel host-pathogen data set, such that it mimics a verified data set, enables efficient deep learning using high expressive capacity architectures and seamless architecture switching. We applied this strategy across various microbiological phenotypes, from superresolved viruses to in vitro and in vivo parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of two- and three-dimensional microscopy data sets. The results suggest that transfer learning from pretrained network data may be a powerful general strategy for analysis of heterogeneous pathogen fluorescence imaging data sets.IMPORTANCE In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.


picture_as_pdf
Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection.pdf
subject
Published Version
Available under Creative Commons: NC 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads