Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts.

Benjamin HMullin; JenniferTickner; KunZhu; JacobKenny; ShelbyMullin; Suzanne JBrown; Frank Dudbridge ORCID logo; Nathan JPavlos; Edward SMocarski; John PWalsh; +2 more... JiakeXu; Scott GWilson; (2020) Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome biology, 21 (1). 80-. ISSN 1474-7596 DOI: 10.1186/s13059-020-01997-2
Copy

BACKGROUND: Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome-wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome-wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset. RESULTS: We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds. Mice lacking one of the genes of interest, the apoptosis/necroptosis gene RIPK3, show disturbed bone micro-architecture and increased osteoclast number, highlighting a new biological pathway relevant to osteoporosis. CONCLUSION: We utilise a unique osteoclast eQTL dataset to identify a number of potential effector genes for osteoporosis risk variants, which will help focus functional studies in this area.



picture_as_pdf
Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Explore Further

Read more research from the creator(s):

Find work associated with the faculties and division(s):

Find work from this publication: