Improving genetic prediction by leveraging genetic correlations among human diseases and traits.

Robert M Maier ORCID logo; Zhihong Zhu; Sang Hong Lee; Maciej Trzaskowski; Douglas M Ruderfer; Eli A Stahl; Stephan Ripke; Naomi R Wray ORCID logo; Jian Yang ORCID logo; Peter M Visscher ORCID logo; +1 more... Matthew R Robinson; (2018) Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nature communications, 9 (1). 989-. ISSN 2041-1723 DOI: 10.1038/s41467-017-02769-6
Copy

Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait.


picture_as_pdf
Improving genetic prediction by leveraging genetic correlations among human diseases and traits.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads