Approximate Bayesian Computation for infectious disease modelling.

Amanda Minter ORCID logo; Renata Retkute; (2019) Approximate Bayesian Computation for infectious disease modelling. Epidemics, 29. 100368-. ISSN 1755-4365 DOI: 10.1016/j.epidem.2019.100368
Copy

Approximate Bayesian Computation (ABC) techniques are a suite of model fitting methods which can be implemented without a using likelihood function. In order to use ABC in a time-efficient manner users must make several design decisions including how to code the ABC algorithm and the type of ABC algorithm to use. Furthermore, ABC relies on a number of user defined choices which can greatly effect the accuracy of estimation. Having a clear understanding of these factors in reducing computation time and improving accuracy allows users to make more informed decisions when planning analyses. In this paper, we present an introduction to ABC with a focus of application to infectious disease models. We present a tutorial on coding practice for ABC in R and three case studies to illustrate the application of ABC to infectious disease models.


picture_as_pdf
1-s2.0-S175543651930026X-main.pdf
subject
Published Version
Available under Creative Commons: NC-ND 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads