Influence of Spatial Aggregation on Prediction Accuracy of Green Vegetation Using Boosted Regression Trees

Brigitte Colin; Michael Schmidt ORCID logo; Samuel Clifford ORCID logo; Alan Woodley; Kerrie Mengersen; (2018) Influence of Spatial Aggregation on Prediction Accuracy of Green Vegetation Using Boosted Regression Trees. Remote Sensing, 10 (8). p. 1260. DOI: 10.3390/rs10081260
Copy

<jats:p>Data aggregation is a necessity when working with big data. Data reduction steps without loss of information are a scientific and computational challenge but are critical to enable effective data processing and information delineation in data-rich studies. We investigated the effect of four spatial aggregation schemes on Landsat imagery on prediction accuracy of green photosynthetic vegetation (PV) based on fractional cover (FCover). To reduce data volume we created an evenly spaced grid, overlaid that on the PV band and delineated the arithmetic mean of PV fractions contained within each grid cell. The aggregated fractions and the corresponding geographic grid cell coordinates were then used for boosted regression tree prediction models. Model goodness of fit was evaluated by the Root Mean Squared Error (RMSE). Two spatial resolutions (3000 m and 6000 m) offer good prediction accuracy whereas others show either too much unexplained variability model prediction results or the aggregation resolution smoothed out local PV in heterogeneous land. We further demonstrate the suitability of our aggregation scheme, offering an increased processing time without losing significant topographic information. These findings support the feasibility of using geographic coordinates in the prediction of PV and yield satisfying accuracy in our study area.</jats:p>


picture_as_pdf
remotesensing-10-01260-v2.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads