Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening programme.

MJ Sweeting; SG Thompson; (2012) Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening programme. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 175 (2). pp. 569-586. ISSN 0964-1998 DOI: 10.1111/j.1467-985X.2011.01005.x
Copy

When biological or physiological variables change over time, we are often interested in making predictions either of future measurements or of the time taken to reach some threshold value. On the basis of longitudinal data for multiple individuals, we develop Bayesian hierarchical models for making these predictions together with their associated uncertainty. Particular aspects addressed, which include some novel components, are handling curvature in individuals' trends over time, making predictions for both underlying and measured levels, making predictions from a single baseline measurement, making predictions from a series of measurements, allowing flexibility in the error and random-effects distributions, and including covariates. In the context of data on the expansion of abdominal aortic aneurysms over time, where reaching a certain threshold leads to referral for surgery, we discuss the practical application of these models to the planning of monitoring intervals in a national screening programme. Prediction of the time to reach a threshold was too imprecise to be practically useful, and we focus instead on limiting the probability of exceeding the threshold after given time intervals. Although more complex models can be shown to fit the data better, we find that relatively simple models seem to be adequate for planning monitoring intervals.


picture_as_pdf
Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads