Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention.

Michael Inouye; Gad Abraham; Christopher P Nelson; Angela M Wood; Michael J Sweeting; Frank Dudbridge ORCID logo; Florence Y Lai; Stephen Kaptoge; Marta Brozynska; Tingting Wang; +16 more... Shu Ye; Thomas R Webb; Martin K Rutter; Ioanna Tzoulaki; Riyaz S Patel; Ruth JF Loos; Bernard Keavney; Harry Hemingway; John Thompson; Hugh Watkins; Panos Deloukas; Emanuele Di Angelantonio; Adam S Butterworth; John Danesh; Nilesh J Samani; UK Biobank CardioMetabolic Consortium CHD Working Group; (2018) Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. Journal of the American College of Cardiology, 72 (16). pp. 1883-1893. ISSN 0735-1097 DOI: 10.1016/j.jacc.2018.07.079
Copy

BACKGROUND: Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. OBJECTIVES: This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. METHODS: Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. RESULTS: The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. CONCLUSIONS: The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.


picture_as_pdf
Inouye-etal-2018-Genomic-risk-prediction.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads