FastSpar: rapid and scalable correlation estimation for compositional data.

Stephen C Watts; Scott C Ritchie; Michael Inouye; Kathryn E Holt ORCID logo; (2018) FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics, 35 (6). pp. 1064-1066. ISSN 1367-4803 DOI: 10.1093/bioinformatics/bty734
Copy

SUMMARY: A common goal of microbiome studies is the elucidation of community composition and member interactions using counts of taxonomic units extracted from sequence data. Inference of interaction networks from sparse and compositional data requires specialized statistical approaches. A popular solution is SparCC, however its performance limits the calculation of interaction networks for very high-dimensional datasets. Here we introduce FastSpar, an efficient and parallelizable implementation of the SparCC algorithm which rapidly infers correlation networks and calculates P-values using an unbiased estimator. We further demonstrate that FastSpar reduces network inference wall time by 2-3 orders of magnitude compared to SparCC. AVAILABILITY AND IMPLEMENTATION: FastSpar source code, precompiled binaries and platform packages are freely available on GitHub: github.com/scwatts/FastSpar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


picture_as_pdf
FastSpar_Watts2018.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads