An Eigenvalue test for spatial principal component analysis.

V Montano ORCID logo; T Jombart ORCID logo; (2017) An Eigenvalue test for spatial principal component analysis. BMC BIOINFORMATICS, 18 (1). 562-. ISSN 1471-2105 DOI: 10.1186/s12859-017-1988-y
Copy

BACKGROUND: The spatial Principal Component Analysis (sPCA, Jombart (Heredity 101:92-103, 2008) is designed to investigate non-random spatial distributions of genetic variation. Unfortunately, the associated tests used for assessing the existence of spatial patterns (global and local test; (Heredity 101:92-103, 2008) lack statistical power and may fail to reveal existing spatial patterns. Here, we present a non-parametric test for the significance of specific patterns recovered by sPCA. RESULTS: We compared the performance of this new test to the original global and local tests using datasets simulated under classical population genetic models. Results show that our test outperforms the original global and local tests, exhibiting improved statistical power while retaining similar, and reliable type I errors. Moreover, by allowing to test various sets of axes, it can be used to guide the selection of retained sPCA components. CONCLUSIONS: As such, our test represents a valuable complement to the original analysis, and should prove useful for the investigation of spatial genetic patterns.


picture_as_pdf
An Eigenvalue test for spatial principal component analysis.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads