A novel multiple-stage antimalarial agent that inhibits protein synthesis.

Beatriz Baragaña; Irene Hallyburton; Marcus CS Lee; Neil R Norcross; Raffaella Grimaldi; Thomas D Otto; William R Proto; Andrew M Blagborough; Stephan Meister; Grennady Wirjanata; +55 more... Andrea Ruecker; Leanna M Upton; Tara S Abraham; Mariana J Almeida; Anupam Pradhan; Achim Porzelle; Torsten Luksch; María Santos Martínez; Torsten Luksch; Judith M Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick Simeons; Laste Stojanovski; Maria Osuna-Cabello; Paddy M Brock; Tom S Churcher; Katarzyna A Sala; Sara E Zakutansky; María Belén Jiménez-Díaz; Laura Maria Sanz; Jennifer Riley; Rajshekhar Basak; Michael Campbell; Vicky M Avery; Robert W Sauerwein; Koen J Dechering; Rintis Noviyanti; Brice Campo; Julie A Frearson; Iñigo Angulo-Barturen; Santiago Ferrer-Bazaga; Francisco Javier Gamo; Paul G Wyatt; Didier Leroy; Peter Siegl; Michael J Delves ORCID logo; Dennis E Kyle; Sergio Wittlin; Jutta Marfurt; Ric N Price; Robert E Sinden; Elizabeth A Winzeler; Susan A Charman; Lidiya Bebrevska; David W Gray; Simon Campbell; Alan H Fairlamb; Paul A Willis; Julian C Rayner; David A Fidock; Kevin D Read; Ian H Gilbert; (2015) A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 522 (7556). pp. 315-320. ISSN 0028-0836 DOI: 10.1038/nature14451
Copy

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


picture_as_pdf
A-novel-multiple-stage-antimalarial-agent-that-inhibits-protein.pdf
subject
Accepted Version
Available under Creative Commons: NC-ND 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads