Antarctica eye study: a prospective study of the effects of overwintering on ocular parameters and visual function.

Matthew H Stahl ORCID logo; Alexander Kumar; Robert Lambert; Michael Stroud; David Macleod; Andrew Bastawrous ORCID logo; Tunde Peto; Matthew J Burton ORCID logo; (2018) Antarctica eye study: a prospective study of the effects of overwintering on ocular parameters and visual function. BMC ophthalmology, 18 (1). 149-. ISSN 1471-2415 DOI: 10.1186/s12886-018-0816-0
Copy

BACKGROUND: In 2013 five polar explorers attempted to complete the first Trans-Antarctic Winter Traverse (TAWT). This study presents the ophthalmological findings for this group, who overwintered in Antarctica as part of the White Mars Human Science Protocol. Antarctic crews are exposed to extreme cold, chronic hypoxia and altered day-night cycles. Previous studies of Antarctic explorers have focused on the prolonged effect of ultraviolet radiation including the development of ultraviolet keratitis and accelerated cataract formation. This is the first study of its kind to investigate the effect of overwintering in Antarctica on the human eye. METHODS: Pre and post-expedition clinical observations were made including visual acuity, contrast sensitivity, colour vision, auto-refraction, subjective refraction, retinal examination, retinal autofluoresence and retinal thickness, which were graded for comparison. During the expedition additional observations were made on a monthly basis including LogMAR visual acuity, autorefraction and intraocular pressure. RESULTS: No significant differences between pre and post-expedition observations were found, including visual acuity, contrast sensitivity, colour vision, refraction, visual fields, intraocular pressure and retinal examination. There was a small but statistically significant decrease in retinal thickness across all regions of the retina, except for the macular and fovea, in all explorers. Intra-expedition observations remained within normal limits. CONCLUSION: Reassuringly, the human eye remains largely unchanged by exposure to the extreme conditions encountered during the Antarctic winter, however, further research is needed to investigate changes in retinal thickness. This may have implications for scientists who spend prolonged periods of time in the polar regions, as well as those who have prolonged exposure to the extreme cold or chronic hypoxia in other settings.


picture_as_pdf
Antarctica eye study_GOLD VoR.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads