Global analysis of Plasmodium falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysis.
Many rapid diagnostic tests (RDT) used on suspected malaria cases are based on the detection of the protein encoded by the Plasmodium falciparum histidine-rich protein-2 (pfhrp2) gene, which shares a high sequence homology with pfhrp3 in the 3D7 reference genome. Parasite isolates showing pfhrp2 and pfhrp3 gene deletions have been emerging over the years, but a comprehensive genetic analysis of these variants is still lacking. With this purpose, genomic data from experimental P. falciparum genetic crosses between different laboratory lines (3D7, HB3, DD2, 7G8 and GB4) were first analysed (n = 98). The frequency of pfhrp2 deletions was consistent with a Mendelian prediction in HB3 × DD2 (56.7%; 95%CI = (39.5%-72.9%)). Moreover, the pfhrp2 and pfhrp3 deletions segregated independently of each other in the same genetic cross. Analysis of 3D7 × HB3 and 7G8 × GB4 estimated the probability of spontaneously generating a pfhrp2 deletion during sexual recombination to be up to 6.2%. Next, whole genome sequence data from 1970 P. falciparum isolates collected globally were analysed. Nine samples displayed depth of coverage consistent with pfhrp2 deletions (0.5%), but the corresponding split-read analysis could not confirm deletions in seven of these samples. Twenty-eight isolates had evidence of pfhrp3 deletions (1.4%), which are widespread in Southeast Asia. Finally, a meta-analysis of published data revealed a positive mean association between the frequencies of pfhrp2 and pfhrp3 deletions in Africa and South America. This result suggested a shared selective pressure acting on these genetic variants. In conclusion, evidence of genetic selection on both pfhrp2 and pfhrp3 deletions was presented, but experimental crosses do not provide evidence of a fitness cost of these variants. Further work is urgently needed to accurately determine the prevalence and the degree of association between these genetic variants, and the respective impact on diagnostic accuracy of many in-use RDT.