Metalloprotein design using genetic code expansion.

Cheng Hu; Sunney I Chan; Elizabeth B Sawyer; Yang Yu; Jiangyun Wang; (2014) Metalloprotein design using genetic code expansion. Chemical Society reviews, 43 (18). pp. 6498-6510. ISSN 0306-0012 DOI: 10.1039/c4cs00018h
Copy

More than one third of all proteins are metalloproteins. They catalyze important reactions such as photosynthesis, nitrogen fixation and CO2 reduction. Metalloproteins such as the olfactory receptors also serve as highly elaborate sensors. Here we review recent developments in functional metalloprotein design using the genetic code expansion approach. We show that, through the site-specific incorporation of metal-chelating unnatural amino acids (UAAs), proton and electron transfer mediators, and UAAs bearing bioorthogonal reaction groups, small soluble proteins can recapitulate and expand the important functions of complex metalloproteins. Further developments along this route may result in cell factories and live-cell sensors with unprecedented efficiency and selectivity.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads