Survivor bias in Mendelian randomization analysis.

Stijn Vansteelandt ORCID logo; Oliver Dukes; Torben Martinussen; (2017) Survivor bias in Mendelian randomization analysis. Biostatistics (Oxford, England), 19 (4). pp. 426-443. ISSN 1465-4644 DOI: 10.1093/biostatistics/kxx050
Copy

Mendelian randomization studies employ genotypes as experimental handles to infer the effect of genetically modified exposures (e.g. vitamin D exposure) on disease outcomes (e.g. mortality). The statistical analysis of these studies makes use of the standard instrumental variables framework. Many of these studies focus on elderly populations, thereby ignoring the problem of left truncation, which arises due to the selection of study participants being conditional upon surviving up to the time of study onset. Such selection, in general, invalidates the assumptions on which the instrumental variables analysis rests. We show that Mendelian randomization studies of adult or elderly populations will therefore, in general, return biased estimates of the exposure effect when the considered genotype affects mortality; in contrast, standard tests of the causal null hypothesis that the exposure does not affect the mortality rate remain unbiased, even when they ignore this problem of left truncation. To eliminate "survivor bias" or "truncation bias" from the effect of exposure on mortality, we next propose various simple strategies under a semi-parametric additive hazard model. We examine the performance of the proposed methods in simulation studies and use them to infer the effect of vitamin D on all-cause mortality based on the Monica10 study with the genetic variant filaggrin as instrumental variable.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads