Performance of Loop-Mediated Isothermal Amplification for the Identification of Submicroscopic Plasmodium falciparum Infection in Uganda.

Shereen Katrak; Maxwell Murphy; Patience Nayebare; John Rek; Mary Smith; Emmanuel Arinaitwe; Joaniter I Nankabirwa; Moses Kamya; Grant Dorsey; Philip J Rosenthal; +1 more... Bryan Greenhouse; (2017) Performance of Loop-Mediated Isothermal Amplification for the Identification of Submicroscopic Plasmodium falciparum Infection in Uganda. The American journal of tropical medicine and hygiene, 97 (6). pp. 1777-1781. ISSN 0002-9637 DOI: 10.4269/ajtmh.17-0225
Copy

Accurately identifying and targeting the human reservoir of malaria parasitemia is critical for malaria control, and requires a reliable and sensitive diagnostic method. Loop-mediated isothermal amplification (LAMP) is increasingly used to diagnose submicroscopic parasitemia. Although most published studies report the sensitivity of LAMP compared with nested polymerase chain reaction (PCR) as ≥ 80%, they have failed to use a consistent, sensitive diagnostic as a comparator. We used cross-sectional samples from children and adults in Tororo, Uganda, a region with high but declining transmission due to indoor residual spraying, to characterize the sensitivity and specificity of pan-Plasmodium LAMP for detecting submicroscopic infections. We compared LAMP results targeting a mitochondrial DNA sequence conserved in all Plasmodium species, performed on DNA extracted from dried blood spots, to those of a gold standard quantitative PCR assay targeting the var gene acidic terminal sequence of Plasmodium falciparum (varATS qPCR), performed on DNA extracted from 200 µL of whole blood. Using LAMP and varATS qPCR increased the detection of parasitemia 2- to 5-fold, compared with microscopy. Among microscopy-negative samples, the sensitivity of LAMP was 81.5% for detecting infection ≥ 1 parasites/µL. However, low density infections were common, and LAMP failed to identify more than half of all infections diagnosed by varATS qPCR, performing with an overall sensitivity of 44.7% for detecting submicroscopic infections ≥ 0.01 parasites/µL. Thus, although the LAMP assay is more sensitive than microscopy, it missed a significant portion of the submicroscopic reservoir. These findings have important implications for malaria control, particularly in settings where low-density infections predominate.


picture_as_pdf
Performance of Loop-Mediated Isothermal Amplification for the Identification of Submicroscopic_GREEN VOR.pdf
subject
Published Version
copyright
Available under Copyright the publishers

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads