Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus: A Mendelian Randomization Analysis.

Caroline E Dale; Ghazaleh Fatemifar; Tom M Palmer; Jon White; David Prieto-Merino ORCID logo; Delilah Zabaneh; Jorgen EL Engmann; Tina Shah; Andrew Wong; Helen R Warren; +34 more... Stela McLachlan; Stella Trompet; Max Moldovan; Richard W Morris; Reecha Sofat; Meena Kumari; Elina Hyppönen; Barbara J Jefferis; Tom R Gaunt; Yoav Ben-Shlomo; Ang Zhou; Aleksandra Gentry-Maharaj; Andy Ryan; UCLEB Consortium; METASTROKE Consortium; Renée de Mutsert; Raymond Noordam; Mark J Caulfield; J Wouter Jukema; Bradford B Worrall; Patricia B Munroe; Usha Menon; Chris Power; Diana Kuh; Debbie A Lawlor; Steve E Humphries; Dennis O Mook-Kanamori; Naveed Sattar; Mika Kivimaki; Jacqueline F Price; George Davey Smith; Frank Dudbridge ORCID logo; Aroon D Hingorani; Michael V Holmes; Juan P Casas; (2017) Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus: A Mendelian Randomization Analysis. Circulation, 135 (24). pp. 2373-2388. ISSN 0009-7322 DOI: 10.1161/CIRCULATIONAHA.116.026560
Copy

BACKGROUND: The implications of different adiposity measures on cardiovascular disease etiology remain unclear. In this article, we quantify and contrast causal associations of central adiposity (waist-to-hip ratio adjusted for body mass index [WHRadjBMI]) and general adiposity (body mass index [BMI]) with cardiometabolic disease. METHODS: Ninety-seven independent single-nucleotide polymorphisms for BMI and 49 single-nucleotide polymorphisms for WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies supplemented with coronary heart disease (CHD) data from CARDIoGRAMplusC4D (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics; combined total 66 842 cases), stroke from METASTROKE (12 389 ischemic stroke cases), type 2 diabetes mellitus from DIAGRAM (Diabetes Genetics Replication and Meta-analysis; 34 840 cases), and lipids from GLGC (Global Lipids Genetic Consortium; 213 500 participants) consortia. Primary outcomes were CHD, type 2 diabetes mellitus, and major stroke subtypes; secondary analyses included 18 cardiometabolic traits. RESULTS: Each one standard deviation (SD) higher WHRadjBMI (1 SD≈0.08 U) associated with a 48% excess risk of CHD (odds ratio [OR] for CHD, 1.48; 95% confidence interval [CI], 1.28-1.71), similar to findings for BMI (1 SD≈4.6 kg/m2; OR for CHD, 1.36; 95% CI, 1.22-1.52). Only WHRadjBMI increased risk of ischemic stroke (OR, 1.32; 95% CI, 1.03-1.70). For type 2 diabetes mellitus, both measures had large effects: OR, 1.82 (95% CI, 1.38-2.42) and OR, 1.98 (95% CI, 1.41-2.78) per 1 SD higher WHRadjBMI and BMI, respectively. Both WHRadjBMI and BMI were associated with higher left ventricular hypertrophy, glycemic traits, interleukin 6, and circulating lipids. WHRadjBMI was also associated with higher carotid intima-media thickness (39%; 95% CI, 9%-77% per 1 SD). CONCLUSIONS: Both general and central adiposity have causal effects on CHD and type 2 diabetes mellitus. Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity on health should include measures of central and general adiposity.


picture_as_pdf
Causal-Associations-of-Adiposity-and-Body-Fat-Distribution-with-Coronary.pdf
subject
Accepted Version
Available under Creative Commons: NC-ND 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads