Predictive models of choroidal neovascularization and geographic atrophy incidence applied to clinical trial design.

Linda C McCarthy; Paul J Newcombe; John C Whittaker; John I Wurzelmann; Michael A Fries; Nancy R Burnham; Gengqian Cai; Sandra W Stinnett; Trupti M Trivedi; Chun-Fang Xu; (2012) Predictive models of choroidal neovascularization and geographic atrophy incidence applied to clinical trial design. American journal of ophthalmology, 154 (3). 568-578.e12. ISSN 0002-9394 DOI: 10.1016/j.ajo.2012.03.021
Copy

PURPOSE: To develop comprehensive predictive models for choroidal neovascularization (CNV) and geographic atrophy (GA) incidence within 3 years that can be applied realistically to clinical practice. DESIGN: Retrospective evaluation of data from a longitudinal study to develop and validate predictive models of CNV and GA. METHODS: The predictive performance of clinical, environmental, demographic, and genetic risk factors was explored in regression models, using data from both eyes of 2011 subjects from the Age-Related Eye Disease Study (AREDS). The performance of predictive models was compared using 10-fold cross-validated receiver operating characteristic curves in the training data, followed by comparisons in an independent validation dataset (1410 AREDS subjects). Bayesian trial simulations were used to compare the usefulness of predictive models to screen patients for inclusion in prevention clinical trials. RESULTS: Logistic regression models that included clinical, demographic, and environmental factors had better predictive performance for 3-year CNV and GA incidence (area under the receiver operating characteristic curve of 0.87 and 0.89, respectively), compared with simple clinical criteria (AREDS simplified severity scale). Although genetic markers were associated significantly with 3-year CNV (CFH: Y402H; ARMS2: A69S) and GA incidence (CFH: Y402H), the inclusion of genetic factors in the models provided only marginal improvements in predictive performance. CONCLUSIONS: The logistic regression models combine good predictive performance with greater flexibility to optimize clinical trial design compared with simple clinical models (AREDS simplified severity scale). The benefit of including genetic factors to screen patients for recruitment to CNV prevention studies is marginal and is dependent on individual clinical trial economics.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads