GLOBAL DYNAMICS OF A MALARIA MODEL WITH PARTIAL IMMUNITY AND TWO DISCRETE TIME DELAYS

CHRISTINAH CHIYAKA; ZINDOGA MUKANDAVIRE; PRASENJIT DAS; (2011) GLOBAL DYNAMICS OF A MALARIA MODEL WITH PARTIAL IMMUNITY AND TWO DISCRETE TIME DELAYS. International Journal of Biomathematics, 04 (02). pp. 135-147. ISSN 1793-5245 DOI: 10.1142/s1793524511001386
Copy

<jats:p> Asymptotic properties of a malaria model with partial immunity and two discrete time delays are investigated. The time delays represent latent period and partial immunity period in the human population. The results obtained show that the global dynamics are completely determined by the values of the reproductive number. Using a suitable Lyapunov function the endemic equilibrium is shown to be globally asymptotically stable under certain conditions. Moreover, we show that when the partially immune humans are assumed to be noninfectious, the disease is uniformly persistent if the corresponding reproductive number is greater than unity. </jats:p>

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads