Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes.

Marit Farenhorst; Bart GJ Knols; Matthew B Thomas; Annabel FV Howard; Willem Takken; Mark Rowland ORCID logo; Raphael N'Guessan ORCID logo; (2010) Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PloS one, 5 (8). e12081-. ISSN 1932-6203 DOI: 10.1371/journal.pone.0012081
Copy

BACKGROUND: Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes. METHODOLOGY/FINDINGS: A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3+/-2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days). CONCLUSIONS/SIGNIFICANCE: Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.

picture_as_pdf

picture_as_pdf
pone.0012081.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads