The Incidence Patterns Model to Estimate the Distribution of New HIV Infections in Sub-Saharan Africa: Development and Validation of a Mathematical Model.

Annick Bórquez ORCID logo; Anne Cori; Erica L Pufall; Jingo Kasule ORCID logo; Emma Slaymaker ORCID logo; Alison Price ORCID logo; Jocelyn Elmes ORCID logo; Basia Zaba; Amelia C Crampin ORCID logo; Joseph Kagaayi ORCID logo; +4 more... Tom Lutalo; Mark Urassa ORCID logo; Simon Gregson; Timothy B Hallett; (2016) The Incidence Patterns Model to Estimate the Distribution of New HIV Infections in Sub-Saharan Africa: Development and Validation of a Mathematical Model. PLoS medicine, 13 (9). e1002121-. ISSN 1549-1277 DOI: 10.1371/journal.pmed.1002121
Copy

BACKGROUND: Programmatic planning in HIV requires estimates of the distribution of new HIV infections according to identifiable characteristics of individuals. In sub-Saharan Africa, robust routine data sources and historical epidemiological observations are available to inform and validate such estimates. METHODS AND FINDINGS: We developed a predictive model, the Incidence Patterns Model (IPM), representing populations according to factors that have been demonstrated to be strongly associated with HIV acquisition risk: gender, marital/sexual activity status, geographic location, "key populations" based on risk behaviours (sex work, injecting drug use, and male-to-male sex), HIV and ART status within married or cohabiting unions, and circumcision status. The IPM estimates the distribution of new infections acquired by group based on these factors within a Bayesian framework accounting for regional prior information on demographic and epidemiological characteristics from trials or observational studies. We validated and trained the model against direct observations of HIV incidence by group in seven rounds of cohort data from four studies ("sites") conducted in Manicaland, Zimbabwe; Rakai, Uganda; Karonga, Malawi; and Kisesa, Tanzania. The IPM performed well, with the projections' credible intervals for the proportion of new infections per group overlapping the data's confidence intervals for all groups in all rounds of data. In terms of geographical distribution, the projections' credible intervals overlapped the confidence intervals for four out of seven rounds, which were used as proxies for administrative divisions in a country. We assessed model performance after internal training (within one site) and external training (between sites) by comparing mean posterior log-likelihoods and used the best model to estimate the distribution of HIV incidence in six countries (Gabon, Kenya, Malawi, Rwanda, Swaziland, and Zambia) in the region. We subsequently inferred the potential contribution of each group to transmission using a simple model that builds on the results from the IPM and makes further assumptions about sexual mixing patterns and transmission rates. In all countries except Swaziland, individuals in unions were the single group contributing to the largest proportion of new infections acquired (39%-77%), followed by never married women and men. Female sex workers accounted for a large proportion of new infections (5%-16%) compared to their population size. Individuals in unions were also the single largest contributor to the proportion of infections transmitted (35%-62%), followed by key populations and previously married men and women. Swaziland exhibited different incidence patterns, with never married men and women accounting for over 65% of new infections acquired and also contributing to a large proportion of infections transmitted (up to 56%). Between- and within-country variations indicated different incidence patterns in specific settings. CONCLUSIONS: It is possible to reliably predict the distribution of new HIV infections acquired using data routinely available in many countries in the sub-Saharan African region with a single relatively simple mathematical model. This tool would complement more specific analyses to guide resource allocation, data collection, and programme planning.


picture_as_pdf
journal.pmed.1002121.PDF
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads