Signal functions for measuring the ability of health facilities to provide abortion services: an illustrative analysis using a health facility census in Zambia.

Oona MR Campbell ORCID logo; Estela ML Aquino; Bellington Vwalika; Sabine Gabrysch; (2016) Signal functions for measuring the ability of health facilities to provide abortion services: an illustrative analysis using a health facility census in Zambia. BMC pregnancy and childbirth, 16 (1). 105-. ISSN 1471-2393 DOI: 10.1186/s12884-016-0872-5
Copy

BACKGROUND: Annually, around 44 million abortions are induced worldwide. Safe termination of pregnancy (TOP) services can reduce maternal mortality, but induced abortion is illegal or severely restricted in many countries. All abortions, particularly unsafe induced abortions, may require post-abortion care (PAC) services to treat complications and prevent future unwanted pregnancy. We used a signal-function approach to look at abortion care services and illustrated its utility with secondary data from Zambia. METHODS: We refined signal functions for basic and comprehensive TOP and PAC services, including family planning (FP), and assessed functions currently being collected via multi-country facility surveys. We then used the 2005 Zambian Health Facility Census to estimate the proportion of 1369 health facilities that could provide TOP and PAC services under three scenarios. We linked facility and population data, and calculated the proportion of the Zambian population within reach of such services. RESULTS: Relevant signal functions are already collected in five facility assessment tools. In Zambia, 30 % of facilities could potentially offer basic TOP services, 3.7 % comprehensive TOP services, 2.6 % basic PAC services, and 0.3 % comprehensive PAC services (four facilities). Capability was highest in hospitals, except for FP functions. Nearly two-thirds of Zambians lived within 15 km of a facility theoretically capable of providing basic TOP, and one-third within 15 km of comprehensive TOP services. However, requiring three doctors for non-emergency TOP, as per Zambian law, reduced potential access to TOP services to 30 % of the population. One-quarter lived within 15 km of basic PAC and 13 % of comprehensive PAC services. In a scenario not requiring FP functions, one-half and one-third of the population were within reach of basic and comprehensive PAC respectively. There were huge urban-rural disparities in access to abortion care services. Comprehensive PAC services were virtually unavailable to the rural population. CONCLUSIONS: Secondary data from facility assessments can highlight gaps in abortion service provision and coverage, but it is necessary to consider TOP and PAC separately. This approach, especially when combined with population data using geographic coordinates, can also be used to model the impact of various policy scenarios on access, such as requiring three medical doctors for non-emergency TOP. Data collection instruments could be improved with minor modifications and used for multi-country comparisons.


picture_as_pdf
12884_2016_Article_872.PMC4868015.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads