Migration statistics relevant for malaria transmission in Senegal derived from mobile phone data and used in an agent-based migration model.

Adrian M Tompkins; Nicky McCreesh ORCID logo; (2016) Migration statistics relevant for malaria transmission in Senegal derived from mobile phone data and used in an agent-based migration model. Geospatial health, 11 (1 Supp). 408-. ISSN 1827-1987 DOI: 10.4081/gh.2016.408
Copy

One year of mobile phone location data from Senegal is analysed to determine the characteristics of journeys that result in an overnight stay, and are thus relevant for malaria transmission. Defining the home location of each person as the place of most frequent calls, it is found that approximately 60% of people who spend nights away from home have regular destinations that are repeatedly visited, although only 10% have 3 or more regular destinations. The number of journeys involving overnight stays peaks at a distance of 50 km, although roughly half of such journeys exceed 100 km. Most visits only involve a stay of one or two nights away from home, with just 4% exceeding one week. A new agent-based migration model is introduced, based on a gravity model adapted to represent overnight journeys. Each agent makes journeys involving overnight stays to either regular or random locations, with journey and destination probabilities taken from the mobile phone dataset. Preliminary simulations show that the agent-based model can approximately reproduce the patterns of migration involving overnight stays.


picture_as_pdf
tompkins_migration_wisdom_v6_nomarkup_1.pdf
subject
Accepted Version
Available under Creative Commons: NC-ND 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads