Cytochrome P450 Allele CYP3A7*1C Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer.
CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat cancer, thereby potentially affecting drug effectiveness. Here, we refined the genetic basis underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) levels and tested for an association between CYP3A genotype and outcome in patients with chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated SNP was rs45446698, an SNP that tags the CYP3A7*1C allele; this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was associated with breast cancer mortality (HR, 1.74; P = 0.03), all-cause mortality in lung cancer patients (HR, 1.43; P = 0.009), and CLL progression (HR, 1.62; P = 0.03). We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (Pinteraction = 0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 gene, is likely to be the functional allele influencing levels of circulating endogenous sex hormones and outcome in these various malignancies. Further studies confirming these associations and determining the mechanism by which CYP3A7*1C influences outcome are required. One possibility is that standard chemotherapy regimens that include CYP3A substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C carriers.
Item Type | Article |
---|---|
ISI | 375851600019 |